

STAR CEMENT LIMITED

LUMSHNONG; MEGHALAYA

TEST CERTIFICATE

FOR

43 GRADE ORDINARY PORTLAND CEMENT

PHN 1 Con 724 168 672 2 Nou 3 Set Ini Fir 4 Fir 5 Soo Le- Aut 1 Lin (Ra sil by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (So	Particular	<u>Test Result</u>		
1 Con 72± 168 672 2 Nou 3 Set Ini Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil) by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (So			CM/L - 5 <u>B I S SPEC</u>	IFICATION
724 168 672 2 Noi 3 Set Ini Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (SO	YSICAL RESULT		(IS: 269	-2015)
168 672 2 Nor 3 Set Ini Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (SO	mpressive Strength (MPa):			
3 Set Ini Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil by 2 Ålu Rat oxi 3 Ins 4 Mag 5 Tot (SO	± 1 hr. (3 days) 8± 2 hrs. (7 days) 2 ± 4 hrs. (28 days)	31.00 40.00 RA	23 33 43-58	Min Min
Ini Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (SO	rmal Consistency (%)	30.50		
Fir 4 Fir 5 Sou Le- Aut 1 Lin (Ra sil by 2 Ali Rat oxi 3 Ins 4 Mag 5 Tot (SO	tting Time (Minutes):			
Le- Aut 1 Lin (Ra sil by 2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (SC	itial nal neness - Blaine (m²/kg)	155 180 268	30 600 225	Min Max Min
1 Lin (Ra sil by 2 Åli Rat oxi 3 Ins 4 Mag 5 Tot (SC	undness: -chatelier Expansion (in mm) toclave Expansion (%)	1.00 0.06	10 0.80%	Max Max
2 Alu Rat oxi 3 Ins 4 Mag 5 Tot (SC	EMICAL RESULT			
Rat oxi 3 Ins 4 Mac 5 Tot (SC	me Saturation Factor atio of percentage of lime to percentage of lica, Alumina and iron oxide) when calculated the formula: (CaO - 0.7 SO3)/(2.8 SiO2 +	0.92	0.66 1.02	Min Max
4 Mag 5 Tot (SC	umina Ratio (5 B-2 O2) tio of percentage of alumina to that of iron ide	1.07	0.66	Min
5 Tot (SC	soluble Residue (% by mass)	2.70	5.0	Max
	gnesia (% by mass) tal Sulphur content as sulphuric anhydride O3), percent by mass	1.78 1.70	6.0 3.5	Max Max
6 Tot	tal Loss on Ignition (%)	3.91	5.0	Max
7 Chl	lorides (% by mass)	0.01	0.1	Max
	ove test results complies with IS 269- 2015 for indicates "RESULTS AWAITED"	43 grade Ordinary	Portland Cement	
	10: 02/ January 2022 ' LOADING: - 08.01.22	Star	HOD (QC) Cement Limited	d